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Effects of interface properties on densification
in a grain compact during sintering
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A theoretical approach to describe the relationship between the interface properties and
densification for sintering materials is presented. This approach is developed by assuming
simplified grain boundary geometry, where scaling is imposed. In general, the results are in
good agreement with theoretical calculations from other studies, as well as with available
experimental data. The model predicts a higher densification rate in particle agglomerates,
if grain growth is inhibited. Hence, qualitative predictions lead to a plausible explanation,
for instance, for the effect of niobium doping on PZT ceramics experimentally reported in
the literature. The bulk and shear viscosities, as well as the sintering stress are reported.
C© 2003 Kluwer Academic Publishers

1. Introduction
Ceramic processing theories, modeling and simulations
are powerful tools for rationally designing sintered ce-
ramic bodies with specific properties. Further progress
in this area requires integrating together the theoreti-
cal descriptions that have been developed at different
length scales (L), i.e., atomistic (L ∼ 10−9 m), meso-
scopic (L ∼ 10−6 m) and macroscopic (L ∼ 10−3 m).

During the last few decades, there have been sig-
nificant developments in sintering theory. The as-
sumption of viscous behavior during sintering has
proven to be useful for describing this phenomenon in
amorphous materials. Frenkel [1] and Mackenzie and
Shuttlewoth [2] made pioneering contributions in this
field.

The application of continuum theories to describe
macroscopic-level phenomena has developed rapidly
in recent years. Bordia and Scherer [3] have reviewed
many of these theories, and have studied the viscous
behavior during sintering.

Macroscopic models accept any macroscopic prop-
erties, regardless of their cause. The viscous proper-
ties may also be calculated using mesoscopic mod-
els. Unlike continuum theories, the mesoscopic models
are more focused on the sintering phenomenon itself.
Scherer Cell Model [4], as well as the models devel-
oped by Martı́nez-Herrera and Derby [5] and Van de
Vorst [6], using the Navier-Stokes fluid equation, are
examples in this respect.

For polycrystals, intermediate and final stages of sin-
tering have been defined by Coble [7]. Based on these
definitions, and applying Fick’s Laws of Difussion at
the mesoscopic level, Riedel and co-workers developed
a diffusional model that can be used to describe the
macroscopic viscous behavior of polycrystals [8–11].
The use of Fick’s laws to describe mass transport during

sintering, was also considered by Cock et al. [12, 13]
and Zhang et al. [14] In general, different sintering
mechanisms may be activated during the sintering of
polycrystals [15], and many of them can be well mod-
eled using Fick’s laws. Viscous sintering in packed par-
ticles has also been studied by Jagota and coworkers
[16–18]. However, sintering theory for polycrystalline
agglomerates is far from being complete, and it requires
further research and study.

Also, much of the recent theoretical work has fo-
cused on grain growth evolution, thus providing a bet-
ter insight in this matter [19–23]. The models resulting
from these studies describe the mesostructural evolu-
tion which, in fact, has a significant influence on the
macroscopic sintering behavior.

In this paper, we consider a compact having an ideal-
ized simplified grain-boundary geometry, where scal-
ing [19–21] is imposed. Hence, the final behavior re-
sults from the both conditions. Section 2 describes the
model used in this study. The results are included in
Section 3. Discussions, as well as the interpretation of
some experimental results reported in literature, are pre-
sented in Section 4.

2. Starting hypothesis and governing
relations

We use a somewhat simplified model able to simulate
the most important characteristics of grain agglomer-
ates at a mesoscopic level. The mesocell is defined
by choosing a volume with constant mass. From this
geometry, it is possible to determine the most com-
mon relations for describing the sintering process. Most
of the properties are calculated following the Riedel
methodology, so it must be pointed out that there is
a remarkable difference between the corresponding
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mesocells. The Riedel mesocell or the Wigner-Seitz
cell is a tetrakaidekahedron related to one grain, as nor-
mal grain growth takes place the mesocell mass varies.
For the present work, grain growth leads to decrease
the related number of grains per mesocell.

2.1. Geometrical relations
We consider the mesocell shown in Fig. 1, where l and h
are the lateral dimension and the thickness, respectively.
Sintering takes place in two dimensions l ×l, h remains
constant during all the process. The plane of the figure is
parallel to the l × l plane. We study the relative density,
ρ, from 0.65 to 1.0. The intermediate and final stages
are represented by stage I (ρ = 0.65–0.9) with np + nI

p
pores and stage II (ρ = 0.9–1.0) with np pores. Then,
nI

p pores collapse for ρpc = 0.9. Three kinds of grain
boundaries are defined and we name them as C1, C2,
and C12. The number of pores np and nI

p; grain contacts,
n(C1), n(C2), and n(C12); and grains, nlg, nmg, and nsg,
are given by the following recurrent relations

np = 14n2 n(C1) = n(C2) = 4n2 n1g = 2n2

n1
p = 16n2 n(C12) = 56n2 nmg = 16n2 (1)

nsg = 16n2

where n is an intrinsic real index that describes the evo-
lution of the system. Fig. 1 shows the n = 1 mesocell.
For higher values of n, the qualitative picture of Fig. 1
is preserved. Sintering proceeds as n decreases. Linear
dimensions fulfill the scaling principle. Then, linear di-
mensions of the grains are reduced by the factor 1/n.
The magnitudes d(C1), d(C2), and d(C12) keep their re-
lations according to the values of n and the grain bound-
ary orientation remain unchangeble for all n values.

Figure 1 The l × l plane view of the mesocell for n = 1. The circles,
which are cylinders in three dimensions, represent the cell pores and the
areas not included in the spheres represent the cell grains. Straight lines
are the grain boundaries, which are assumed to have curvatures in the
calculation. Three kinds of grain boundaries C1, C2, and C12 are defined
and three kind of grains lg (large size grain), mg (middle size grain),
and sg (small size grain). The h thickness dimension remains constant
during all the process. The smallest pores are those named as nI

p pores

in this work. The collapse of nI
p pores defines the end of stage I. The rest

of the pores are known as np pores and collapse for ρ = 1.0.

Pore reduction implies that the relation r/d(C12) varies
as sintering proceeds and scaling is violated is this
sense. Resuming, all mentioned assumptions are sim-
plified descriptions of experimentally reported behav-
iors. They are consistent with the Statistical Self Simi-
larity hypothesis [19–21].

The relative density of the grain compact may be
defined as:

ρ = Vs

V
(2)

where V and Vs correspond, respectively, to volume of
the mesocell and volume of the solid part of it. (V = Vs
for ρ = 1) They are related as shown:

V = Vs + npπr2
n h + nI

pπr I2

n h (3)

where rn and r I
n are the pore radius of the np and nI

p
pores respectively related to the intrinsic parameter n.
Note that, rn = r I

n = 0 implies that ρ = 1.
The following equations express the relation among

l, ls, rn, and r I
n, where l and ls are the cell lateral dimen-

sions for V = l2h and Vs = l2
s h respectively:

hl2 = hl2
s + 14n2πr2

n h + 16n2πr I2

n h

= hl2
s + 14πr2

n=1h + 16πr I2

n=1h (4)

The constant parameter ls represents the cell lateral di-
mension for ρ = 1. Besides,

rn = r

n
r I

n = r I

n
(5)

and we take r = rn=1 and r I = r I
n=1.

The system evolution rate (see Fig. 1) is defined as:

vse = − ls

n0

dn

dt
(6)

and the pore decrease velocity as:

vpd = −dr

dt
. (7)

Now, n and r can be written from the above definitions
as:

n(t) = n0

(
1 − 1

ls

∫ t

0
vse(t ′) dt ′

)
(8)

r (t) = r0 −
∫ t

0
vpd(t ′) dt ′

Hence, the relative density takes the following form:

ρ = 1

1 + 14π
(
α0 − 1

ls
Ipd

)2 + 16π
(
αI

0 − 1
ls

I I
pd

)2 (9)

where Ipd = ∫ t
0 vpd(t ′) dt ′, α0 = r0/ ls, I I

pd = ∫ t
0 vI

pd(t ′)
dt ′, and αI

0 = r I
0/ ls. The parameters α0 and αI

0 may be
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calculated from

ρ0 = 0.65 = 1
/(

1 + 14πα0 + 16παI
0

)
(10)

ρpc = 0.9 = 1/(1 + 14πα9)

where ρ0 = 0.65 and ρpc = 0.9 are taken as the green
density, and the nI

p pore collapse density. The relation
among α0, α

I
0, and α9 will be stated later. Densification

rate is straightforward from

ερ = dρ

dt
(11)

The cross sectional areas of the idealized grains are
given by:

A1g = (2d(C12))2 − 4

(
1

4
πr2

n

)
− 4

(
1

2
πr I2

n

)
= πr2

1g

Amg = d2(C12) − 2

(
1

4
πr2

n

)
− 2

(
1

4
πr I2

n

)
= πr2

mg

Asg = 1

2
d2(C12) − 2

(
1

8
πr2

n

)
−

(
1

4
πr I2

n

)
= πr2

sg

(12)

It is important to note that an effective grain radius
was defined in the above equation, as if the idealized
grains were spherical. Under this assumption, the av-
erage grain size can be calculated using the following
equation.

〈rgs〉 = 1

n1g + nmg + nsg
(n1gr1g + nmgrmg + nsgrsg)

(13)

2.2. Scaling principle
Grain boundary velocities may be expressed as
(Appendix 1):

vgb1 = vgb2 = du1

dt
= du2

dt
≈ 1

2n

l

ls
vse

(14)

vgb12 = du12

dt
≈

√
2

8n

l

ls
vse

Assuming a steady-state condition for grain boundary
migration [22], then

vgb = Mp (15)

where p is the driving force or pressure, and Mgb is
the mobility of the grain boundary, i.e., the velocity per
unit driving force. Considering p = kgbγgb where kgb
and γgb are the grain boundary curvature and energy per
unit area. Then, grain boundary velocity has the form:

vgb = Kgb kgb (16)

where Kgb = Mgbγgb and we call it the grain boundary
constant.

In Equation 16, it is implicit that grain boundary
velocity is proportional to the inverse of the bound-
ary curvature radius and that the mobility has a con-
stant value. As it is known, for several cases mobility
changes during grain growth and scaling may not hold
[24]. Hence, this approximation is not valid for such
cases. In addition, we have that the mobility of inclu-
sion particles and/or pores may be proportional to r−2

gbc,
r−3

gbc, or r−4
gbc, depending on the assumed mechanism and

particle shape [15]. rgbc is the grain boundary curva-
ture radius. In our model, particle shape is a constant
since we only take into account normal grain growth.
Considering any of this kind of dependences for the
grain boundary velocity does not change the qualitative
results.

Surface migration is controlled by surface diffusion.
Then we have [11]

u̇s = −2γps�δDs

kBT
∇2kps (17)

where the classical kBT is Boltzmann’s constant times
the absolute temperature, � represents the atomic vol-
ume, δDs is the surface-boundary width times its diffu-
sion coefficient, u̇s is the normal displacement rate of
the pore surface, γps is the specific surface energy, and
kps is the pore surface curvature.

Pore surface curvature for the mesocell (Fig. 1)
may be written as kps = 1/r . Taking into account
Equations 7 and 17, pore decrease velocity has the
form:

νpd = 4γps�δDs

kBT
k3

ps = Kpsk
3
ps (18)

being Kps the pore surface constant.
The scaling principle for the mesocell (Fig. 1) may

be written in the following form:

λ(1) = nλ(n) (19)

where λ represents the cell dimensions. Finally, we may
state that:

vgb(n) = nvgb(1)
(20)

vpd(n) = n3vpd(1)

By combining Equations 14, 16, 18 and 20, the sys-
tem evolution rate and pore decrease velocities can be
obtained from the following equations

vse = Kgbn2 ls

l
FM

vpd = Kpsk
3
0Pn3 (21)

vI
pd = Kpsk

I3

0Pn3

where FM is a geometrical factor related to the curvature
of the grain contacts and may take the values 8/

√
2

k0C12 , 2k0C1 , and 2k0C2 .
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2.3. Curvature evolution
The assumption that pores are cylinders and grain
boundaries are planes is an approximation to calculate
the viscous properties and density. In order to have a
closed mathematical problem, it is necessary to obtain
the dependences of the pore decrease velocities and
system evolution rate on sintering time. As is widely
known, starting from the interface curvature, the driv-
ing pressure must be calculated and we may obtain the
mesostructural evolution. In the present work, as was
already pointed out, scaling is imposed to the topol-
ogy of the mesocell. Hence, the way the mesostructure
evolutes is imposed. Setting the initial values to inter-
face curvatures imply that the dihedral angles are set
as well.

Therefore, we only set the initial grain boundaries
curvatures k0C12 , k0C1 , and k0C2 ; and initial pore curva-
tures k0p and kI

0p. As scaling holds, increasing the scale
of the structure by n reduces all curvatures by 1/n [19].
For our problem, we set FM = 8/

√
2 k0C12 = 2k0C1 =

2k0C2 and kI
0p = β1/3k0p, being β a constant factor.

Then, we have:

vI
pd = Kpsk

I3

0pn3 = Kps
(
β1/3k0p

)3
n = βvpd (22)

Taking into account the r (t) dependence of Equations
8 and 22, we may say:

0 = αI
0 − β

ls

∫ t9

0
vpd(t ′) dt ′

α9 = α0 − 1

ls

∫ t9

0
vpd(t ′) dt ′

(23)

where t9 is the time of the nI
p pore collapse (ρpc = 0.9).

From Equation 23, we can obtain that:

0 = αI
0 − β(α0 − α9) (24)

Up to this point the statement of the mathematical for-
mulation is completed. The equation system formed by
Equations 4, 5, 8 and 21 can be solved numerically
(Appendix 2). Then, the pore decrease and the system
evolution rate are obtained. First, it is necessary to find
α0 and αI

0 and they are obtained solving the equation
system formed by Equations 10 and 24, setting the value
of β. Starting from the pore decrease velocity, vpd, and
the system evolution rate vse, all the variables of interest
may be obtained. Commonly, sintering models report
the viscous coefficients and the sintering stress. They
are also calculated.

T ABL E I Contact radii vector, q̄(q1, q2), module of contact radii, (q =
√

q2
1 + q2

2 ), normal to the contact surface, n̄(n1, n2), and contact area,
hd(Ci) for the contacts C1, C2, and C12 shown in Fig. 1. The superscript p runs along all the contact grains in the mesocell

Contact vector radii Module of Normal to the contact Contact area

Contacts (q (p)
1 , q (p)

2 ) contact radii q surface (n(p)
1 , n(p)

2 ) hd(C1)

C1 (l/4n, 0) l/4n (1, 0) h(l/4n − 2rn)
C2 (0, l/4n) l/4n (1, 0) h(l/4n − 2rn)
C12 (l/8n, ±l/8n)

√
2l/8n

√
2(1, ±1) h(

√
2l/8n − rn − r I

n)

2.4. Viscous coefficients
Viscosity may be obtained by calculation of the force
through the contacts. Following the methodology pro-
posed by Riedel et al. [8], we have:

∇2σn = − kBT

�δDb
un = − γgb

Kgbδ2s
u̇n (25)

This equation is solved with the boundary condition

σn = 2γpsk (26)

where σn is the normal stress on the boundary, δDb is the
grain-boundary width times its diffusion coefficient, u̇n
is the normal displacement rate of the boundary, and k is
the grain curvature at the junction grain-grain-pore. In
Equation 25, we consider that the diffusion coefficient
and the mobility are related by the relation:

Mgb =
(

Db

kBT

)(
�

sδ

)
(27)

where s = hdC is the contact area between grains. This
relation considers the atomic-jump mechanism across
the border. For other mechanism other relations may
be found, but in principle mobility and diffusion are
related by the Nernst-Einstein equation [15].

Finally, the normal stress, σn, can be calculated. Inte-
grating it over the contact surface and adding the surface
tension along its perimeter, 2γpsh, the normal force, Fn,
exerted on the boundary is

Fn = 2γs(h + ks) + 1

12

γgb

Kgbδ2
u̇nd2

C (28)

where dC is represented in Fig. 1 and reported in Table I.
So, the energy rate equality can be written in the

following form:

Ẇ =
∑

p

u̇(p)
n F (p)

n = V σijε̇ij (29)

where σij, ε̇ij are the stress tensor and the deformation
rate tensor, respectively. The index p runs along all the
contact grains in the mesocell.

Considering σij = Cijkmε̇km + δijσs, where σs is
the sintering stress, the viscous coefficients can be
expressed as

Cijkm = 1

V

∑
p

γgbd2
C(p)

12Kgbδ2
n(p)

i n(p)
k q (p)

j q (p)
m (30)

where n(p)
i = q (p)

j /q (p), q (p)
j are the normal to the contact

surface and the contact radii vector, respectively. Table I
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lists the magnitudes and calculations performed regard-
ing contact radii vector, q̄(q1, q2), module of contact
radii, (q =

√
q2

1 + q2
2 ), normal to the contact surface,

n̄(n1, n2), and contact area, hd(Ci).
Hence, the viscous coefficients (see Table I) may be

written as:

C1111 = 1

h

γgb

12Kgbδ2

1

4n2

[(
l

4
− 2r

)2

+ 12

(√
2l

8
− r − r I

)2]
(31)

C1212 = 1

h

γgb

12Kgbδ2

1

4n2

(
l

4
− 2r

)2

(32)

G = C1212 = C1122

K = 1

3
(C1111 + C1122) (33)

The main transport mechanism giving rise to densifi-
cation is assumed to be the grain boundary diffusion
in the contact area between particles. Surface diffusion
at the pore surfaces influences densification because it
governs the material transport from the pore surfaces
to the neck. A similar picture is considered by Svoboda
et al. [11]. Viscosity coefficients show its straight de-
pendence on Kgb (see Equations 31 and 32). The depen-
dences on Kps and Kgb are implicit in the parameters
n, l, and r describing the cell transformations.

2.5. Sintering stress
The sintering stress is calculated by the following
expression:

σs = −3K ε̇ρ (34)

3. Results
For the sake of performing computation, we take ls = 1,
and parameter h may not be part of codes. Numerical
values are required for n0, k0p, β, and FM; arbitrarily,
with a little intuition, and trial and error, the selected
numbers are 20, 0.25, 0.05 and 1. For simplicity we
consider Kgb = 1. Then, for Kps > Kgb, we have Kps =
1.2 and for Kps < Kgb; Kps = 0.8. Therefore, viscosity
is reported as G/(γgb105/48 Kgbδ

2) and sintering stress
as σs/(γgb105/48 Kgbδ

2ut) where ut stands for unit
times.

Fig. 2 shows the time dependence for the pore de-
crease velocity and system evolution rate.

The time dependence of pore radius, mesocell lateral
dimensions, and interface area, are plotted in Fig. 3. As
expected, all these magnitudes decreased with increas-
ing time. The top axis in Fig. 4 represents the time
dependence of the average grain size, while the botton
axis shows the average grain size dependence on rela-
tive density. Notice that the average grain size increases
with increasing time and density. The influence of in-
terface properties on time dependence is negligible, but
they do affect the density dependence.

Figure 2 Dependence of the pore decrease velocity, vpd, and system
evolution rate, vse, on time. Both parameters decrease with time. Pore
decrease velocity is influenced by interface properties while system evo-
lution rate is not affected.

Figure 3 Dependence of the pore radius, r and r I, cell lateral dimen-
sion, l, and interface area, Aint, on time. All the mentioned magnitudes
decrease with time and are affected in the same way by the interface
properties. The decrease of the grain boundary constant accelerate the
decrease of the shown dependences.

The time dependences of the relative density and
densification rate are shown in Fig. 5. Notice that rel-
ative density increases with increasing time, and den-
sity increases more rapidly when Kps > Kgb. As to the
dependence of the densification rate, the highest val-
ues occur when Kps > Kgb, during the first time units.
However, as densification proceeds, the situation is in-
verted. The dependence of the densification rate on rel-
ative density is presented in Fig. 6. Notice that, for all
the relative density values, the highest values for the
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Figure 4 Dependence of the average grain size on time (bottom axis)
and relative density (top axis). Average grain size increases as sintering
occurs. Interface properties influence the dependence on relative density
and does not on time.

Figure 5 Dependence of relative density, ρ, and densification rate, ε̇ρ , on
time. Relative density increase with time and densification rate decrease.
Interface properties affect both dependences.

densification rate occur for Kps > Kgb, and the lowest
for Kps < Kgb.

Figs 7, 8 and 9 show the typical macroscopic mag-
nitudes reported in sintering models: bulk and shear
viscosities, and sintering stress.

4. Discussion
It is widely known from theoretical and experimental
studies that the sintering process is faster during the

Figure 6 Dependence of the densification rate, ε̇ρ , on the relative den-
sity. Densification rate decreases as relative density increases. The de-
crease of the grain boundary constant favors the densification rate.

Figure 7 Dependence of the bulk viscosity, K , on the relative density.
The bulk viscosity increase with the relative density. The decrease of the
grain boundary constant provokes the bulk viscosity to decrease favoring
densification.

initial time units. As shown in Fig. 2, this tendency is
evident for the calculated decreases in pore decrease
velocity and system evolution rate. Note that the inter-
face properties have a negligible effect on the evolution
rate. On the other hand, the pore decrease velocity is
significantly influenced by the interface constants. The
higher the pore surface constant, the higher the veloci-
ties obtained from calculations.

As expected, there was a tendency of the pore radius
and cell lateral dimension to decrease with increasing
time (Fig. 3). Otherwise, densification would not be
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Figure 8 Dependence of the shear viscosity, G, on the relative density.
The dependence on interface properties behaves almost as equal as the
one for the bulk viscosity.

Figure 9 Dependence of the sintering stress, σs, on the relative density.
The general tendency of the sintering stress is to decrease its absolute
value. This tendency is intensified for ρ = 0.9–1.0.

achieved. Fig. 3 also illustrates the reduction of the
interface area. This result agrees completely with the
generally accepted idea that the driving force for sinter-
ing is the decrease in the surface free energy. It is known
that energy and interface area are linearly related by the
free energy per unit area of the grain boundary and the
pore surface.

The relation Gm − Gm
0 = Kggt , where G, G0 and

Kgg are, respectively, grain size, initial grain size, and
a given constant, is well known in scientific litera-
ture. The kinetic grain growth exponent, m, depends
on the grain growth mechanisms. As result of scaling,

normal grain growth takes place and m is expected to be
equal 2 [19]. The fitting between the mentioned relation
and the dependence of Fig. 4 gives the best results for
Kgg = 2.8, but this fitting is not good enough. We be-
lieve that this litter difference is due to that in the present
model grain growth is taking place together with pore
decrease and this last fact with the implicit approxima-
tion of Equation 12 influence the time dependence of
the average grain size. Fig. 4 shows that the interface
properties do not affect the dependence of the average
grain size on sintering time. This is because, the sinter-
ing mechanism is the same for all the cases considered.
On the other hand, the dependence of grain size on rel-
ative density is affected by the interface constants. This
is because of the influence of the interface properties
on the relative density time dependence, as shown in
Fig. 5.

The dependence of average grain size on density is
also known as microstructure development map. Note
in Fig. 4 that, as density increases, so do grain growth,
and grain growth rate. According to experimental data
[25, 26], there is virtually no grain growth when the rel-
ative density is below 0.9 (stage I). Approximately 90%
of grain growth occurs above this value (stage II). The
tendency shown in Fig. 4 is qualitatively consistent with
this behavior. It is known [27] that there is a competition
between densification and grain growth. During the first
sintering time units, for low density materials, the free
energy of the system decreases by densification, rather
than by grain growth. As density increases, the situa-
tion reverses itself. It is worthily to point out that, in the
present model, the occurrence of grain growth (related
to system evolution) and pore decrease does not start
form energy minimization, but the physical picture is
congruent with the mentioned energy statement.

The density and the densification rate dependences
reported in Fig. 5 are similar to the experimental results
reported by Durruthy et al. [28] for Nb-dopped PZT ce-
ramics. These authors have shown experimentally that
Niobium doping inhibits grain growth and enhances
densification. Fig. 10 illustrates the Durruthy results.
From Figs 5 and 10, it may be concluded that doping
favors the pore interface constant Kps over that of the
grain boundary interface Kgb.

Fig. 5 also describes the findings of Han et al. [29] for
Al-doped ZnO ceramics at temperatures above 1200◦C,
and at sintering times longer than some critical values,
which depend on the Al-doping level.

The comparison between the results of this model
and those of Han et al. is not straightforward. They re-
ported that, for sintering times of less than 150-min at
1200◦C, the fired densities of Al-doped ZnO samples
were lower than those of pure ZnO. These results seem
to contradict this model and the above interpretation
of Durruthy’s results. Hang et al. suggested that there
was a competition between grain growth and sintering
potential in the materials they studied. They concluded
that the densification rate decreases because of the re-
duction in the sintering potential, due to the drag caused
by pinning. As long as pinning is effective, scaling is
being violated. This effect resulted from the presence of
a second phase (ZnAl2O4). The grain boundary pinning
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Figure 10 Dependence of the relative density, ρ, and densification rate,
ε̇ρ , on the sintering time for PZT + x% wt Nb2O5 powder compact,
where x = 0.2 (�), 0.4 (•), 0.6 (�), 0.8 (�), 1.0 (�), sintered at 1250◦C,
indicating that the highest densities are reached for the highest Nb
concentrations. Effective grain boundary mobility may be written as
Mef = Mgb/(1 + Ax), where A is a constant.

can be clearly observed in the SEM micrograph in their
paper. In the present model, grain boundary pinning
is not taken into account. Equation 15 is assumed to
be valid at all times. According to the atomistic sim-
ulation performed by Upmanyu et al. [22], pinning of
grain boundaries by vacancies causes a deviation from
the steady-state grain boundary migration. This means
that the linearity between the driving force and the in-
terface velocity, implicit in Equation 15, is not valid
during pinning. Fig. 9 shows that the interface prop-
erties does not change essentially the sintering stress
behavior. This fact is consistent with the assumption of
Hang et al. that the force exerted by the dragging parti-
cles results in a decrease in the sintering potential. After
150-min of sintering and at higher temperatures, grain
growth is considered to be the dominant mechanism
for Al-doped ZnO ceramic sintering. For this interval,
it may be concluded that doping favors the pore inter-
face constant over that of the grain boundary interface.
In the above interval, the model predictions agree with
experimental results.

Castro et al. [30] studied the Nb-doped PZT ceram-
ics. Although, they performed careful SEM observa-
tions, they found no pinning in their materials. We think
that the absence of the pinning effect explains the coin-
cidence, between the predictions of the present model
and the results of Durruthy et al. [28], for all the values
of the sintering time.

Cahn’s model, outlined by Rahaman [31], postulates
that the total drag force on the boundary is the sum of
the intrinsic drag and the drag due to dopant atoms.
This may be interpreted as a decrease of the effective
mobility. In fact, in Cahn’s model there is a relation that
supports this conclusion, under certain considerations.

Dopant atoms are expected to reduce the grain bound-
ary mobility. This drag effect induces grain growth in-
hibition, for instance, the effect shown in Fig. 4 as Kgb
decreases. The interface energy must increase as result
of dopant atoms at grain boundaries. However, the drag
effect caused by impurities is dominant. Based on the
previous assumption that doping favors Kps over Kgb,
we conclude that grain growth inhibition favors densi-
fication (Figs 4 and 5). This is exactly the effect of dop-
ing PZT ceramics with Nb experimentally observed by
Durruthy et al. [28].

From Fig. 6, it may be concluded that the higher the
pore surface constant, or the lower the grain boundary
constant, the higher the densification rate. This state-
ment is also valid for the behaviors illustrated in Fig. 5.
The interceptions of the densification rate curves on
time is a consequence of the fact that, after the sys-
tem with higher densification has reached the highest
densities, the densification rate exhibits a very strong
tendency to decrease. This tendency appears “later” in
the other lower density systems of this model, because
of lower densification rates.

In Figs 7 and 8, it can be observed that, as the grain
boundary constant decreases, the bulk and shear vis-
cosity do as well. This behavior may be interpreted as
if densification or sintering were favored. Also, it can
be observed that viscosities increase with density. This
supports the already mentioned fact that sintering is
faster during the initial time units.

In Fig. 9, it can be noticed that the absolute value of
sintering stress decreases as density increases. In addi-
tion, it may be seen that approximately half of the sinter-
ing stress decrease occurs during the stage II (ρ = 0.9–
1.0) and this does not correspond to half of the density
increase. This behavior is related with the competition
between the pore decrease size, favoring the increase of
the absolute value of sintering potential, and the grain
growth, which disfavors the mentioned magnitude [31].
Comparing the average grain size density dependence
(Fig. 4) with the one of Fig. 9, it can be noticed that
the most significant drop for the absolute value of the
sintering stress occurs when most of the grain growth
takes place.

The model presented herein has some simplifications
and assumptions, so it does not consider effects like
pinning, some kinetic aspects of pore movement, and a
more realistic picture of grain growth phenomena and
coarsening. This model can also be improved by in-
corporating the different sintering mechanisms, and by
considering a more realistic energetic picture. A finer
study is out of the scope of the present work. Neverthe-
less, a modest insight has been gained.

5. Conclusions
A model considering densification and grain growth as
a result of a proposed geometry with scaling imposed
has been stated. With this model, it is possible to study
the effects of the interface properties on densification.
It can be concluded that a decrease in the interface con-
stant for the grain boundary, or an increase in the pore
surface constant, will increase the densification rate,
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as long as the steady-state grain boundary migration is
valid. This model confirms that grain growth inhibition,
obtained by reducing the grain boundary mobility, is a
means to increase densification. This result is consis-
tent with some previous experimental results reported
in scientific literature.

As in most sintering models, the viscosities and the
sintering potential are reported. It should be noted that,
as the interface constants for the grain boundary are dis-
favored over the pore surface ones, viscosities tend to
decrease. This means, again, that densification is pro-
moted. It must be noticed that interface properties do not
affect the qualitative behavior of the sintering potential.
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Appendix 1: Interface velocities
According to Fig. 11, for contacts C1 and C2, it is pos-
sible to state that between two subsequent values of n,
we have:

du = dn
u − dn+1

u (A1.1)

where

dk
u = l

2n

dk+1
u = l

2(n + 1)

(A1.2)

Figure 11 The l × l plane view of the mesocell for n = 2. The para-
meters du(C1), du(C2), and du(C12) represent the grain boundary dis-
placement for the grain boundary C1, C2, and C12 between n = 1 and
n = 2. The double line represents some of the C12 grain boundary for
n = 1.

then

du = l

2n(n + 1)
(A1.3)

From Equation 8, we may rewrite:

n2 = n1

(
1 − 1

ls

∫ t2

t1

vse(t ′) dt ′
)

≈ n1

(
1 − vse(t̄)

�t

ls

)
(A1.4)

where n1 and n2 correspond to t1 and t2, and t̄ ≈ (t1 +
t2)/2.

Let us suppose that n1 = n + 1 and n2 = n, then

n = (n + 1)

(
1 − vse

�t

ls

)
(A1.5)

As follow, the interface velocity is written in the fol-
lowing way:

du1

dt
≈ du

�t
= l

ls

1

2n
vse (A1.6)

Analogously, du12/dt is obtained.

Appendix 2: Computation of system
evolution rate and pore decrease velocities
Solving the equation system formed by Equations 4, 5,
8 and 21 the pore decrease and the system evolution ve-
locities can be calculated, but the integral in Equation 8
implies some numerical difficulties when we are solv-
ing the equation system.

We propose the following method to solve this
problem:

Equation 8 may be written as:

n(t) ≈ n0

(
1 − 1

ls

N∑
i=1

vse(t̄)�t

)
,

r (t) ≈ r0 −
N∑

i=1

vpd(t̄) �t

(A2.1)

for the present calculations �t is taken very small in
order to minimizes the error, unlike (A1.5).

First, we solve the system for t = 0, the equations
take the following form

l2(0) = l2
s + 14πα2

0 + 16παI2

0
n(0) = n0
r (0) = r0

r I(0) = r I
0

r0 = α0ls

r I
0 = αI

0ls

vse(0) = Kgbn2(0)
ls

l(0)
FM

vpd(0) = Kpsk3
0pn3(0)

(A2.2)

The cell lateral dimension, l, decreases with time, then

�l2 = 14π
(
r2

1 − r2
2

) + 16π
(
r I2

1 − r I2

2

)
(A2.3)
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Taking into account that Equation 8 may be written as

r2 = r1 −
∫ t2

t1

vpd(t ′) dt ′ ≈ r1 − vpd(t̄) �t, (A2.4)

and Equation A2.3, the parameter, l, may be written as

l2(t) = l2(t − �t) − 14π ((2r (t − �t)

− vpd(t)t)vpd(t)t) − 16π ((2r (t − �t)

−βvpd(t)t)βvpd(t)t) (A2.6)

Finally, the system evolution and pore decrease veloc-
ities are calculated consecutively solving the equation
systems formed by Equation A2.6 and the following
equations

n(t) = n(t − �t) − n0vse(t)
�t

ls

vse(t) = Kgbn2(t)
ls

l(t)
FM (A2.7)

vpd(t) = Kpsk
3
0pn3(t)
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